

Process model management and analytics

presented by Barbara Weber

DTU Compute Department of Applied Mathematics and Computer Science

Business Process

Collection of related events, activities and decisions, that involve a number of actors and objects, and that collectively lead to an outcome that is of value to an organization or its customers.

Examples:

- Order-to-Cash
- Quote-to-Order
- Procure-to-Pay
- Fault-to-Resolution (Issue-to-Resolution) / Claim-to-Settlement
- Application-to-Approval

Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A. Reijers: Fundamentals of Business Process Management. Springer 2013, ISBN 978-3-642-33142-8, pp. I-XXVII, 1-399

What is a Business Process: Recap

Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A. Reijers: Fundamentals of Business Process Management. Springer 2013, ISBN 978-3-642-33142-8, pp. I-XXVII, 1-399

Process Model

• Graphical representation of a business process

Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A. Reijers: Fundamentals of Business Process Management. Springer 2013, ISBN 978-3-642-33142-8, pp. I-XXVII, 1-399

Business Process Management

...designing, analyzing, redesigning, executing, and monitor business processes.

5

DTU

Enabling Flexibility Process Adaptations, Process Evolution, and Variability

Manfred Reichert Barbara Weber

Enabling Flexibility in Process-Aware Information Systems Challenges, Methods, Technologies

M. Reichert and B. Weber: Enabling Flexibility in Process-Aware Information Systems: Challenges, Methods, Technologies, Springer 2012

Deringer

The Process Spectrum

- The process spectrum reaches from
 - completely predictable and highly repetitive
 - to completely unpredictable and little repetitive

The Process Spectrum

- The process spectrum reaches from
 - completely predictable and highly repetitive
 - to completely unpredictable and little repetitive

Completely unpredictable Highly repetitive

Pre-specified process model, e.g., using BPMN

Completely unpredictable Little repetitive

The Process Spectrum

- The process spectrum reaches from
 - completely predictable and highly repetitive
 - to completely unpredictable and little repetitive

Highly repetitive

Completely unpredictable Little repetitive

Process Adaption

- Ability to adapt process and its structure to temporary events (due to special cases, exceptions)
- Planned
 - Typically handled via exception handling
- Unplanned
 - Require ad-hoc changes, i.e., structural process model adaptations changes

Process Adaption through Ad-hoc Changes

Behavioral changes require structural process model adaptations

as well as <u>adaptations</u> of the <u>process instance state</u>

State Compliance A Correctness Notion for Dynamic Instance Changes

Ensuring Dynamic Correctness

May the depicted schema change be propagated to the process instance?

Need for general correctness criterion

⇒State Compliance

Manfred Reichert, Peter Dadam: ADEPTflex-Supporting Dynamic Changes of Workflows Without Losing Control. J. Intell. Inf. Syst. 10(2): 93-129 (1998)

Structural Adaptations of Pre-Specified Process Models

- Change Primitives
 - Add node
 - Remove node
 - Add edge
 - Remove edge
 - Move edge
- High-Level Change Operations
 - Combines a set of change primitives
 - Referred to as Adaptation Patterns in the following

Adaptation Patterns versus Change Primitives

Adaptation Patterns versus Change Primitives

Change Primitives	Process Adaptation Patterns
Operate on single elements of process schema	Provide high-level change operations
Correctness has to be checked after adaptation	Correctness-by-construction
No Assumption regarding structure of process schema	Process schema needs to be block- structured

Adaptation Patterns

ELSEVIER

Data & Knowledge Engineering Volume 66, Issue 3, September 2008, Pages 438-466

Change patterns and change support features – Enhancing flexibility in process-aware information systems

Barbara Weber ^a $\stackrel{\diamond}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Manfred Reichert ^{b, c} $\stackrel{\boxtimes}{\sim}$, Stefanie Rinderle-Ma ^b $\stackrel{\boxtimes}{\sim}$

Catalogue of Adaptation Patterns

Process Evolution

- Ability to change the implemented process when the real-world process changes
- Immediateness of evolution
 - Deferred
 - Running instances not affected
 - Immediate
 - Running instances affected
 - Requires migration of instances

Process Schema Evolution

Change Support Features

Schema Evolution, Version Control and Instance Migration

Schema Evolution

- Changes at the process type level
- How to deal with running instances when adapting the original process schema?
 - Scenario 1: No version control
 - Scenario 2: Co-existence of instances of old / new schema
 - Scenario 3: Change propagation and instance migration

Scenario 1: No Schema Evolution

Schema is overwritten and instances are migrated

Type change overwrites schema S

Instance I2 is in inconsistent state

Process Instance I1

Process Instance I2

Change is propagated to all running process instances

Process Instance I1

Process Instance I5

Scenario 2 – No version control

Co-existence of instances of different schema versions

Type change results into a new version of schema S

Old instances remain with schema S

Instances created from S (before schema evolution)

Process Instance I1

Process Instance I2

Instances created from S' (after schema evolution)

Process Instance I5

Scenario 3 – Instance Migration

Compliant instances are migrated to the new schema

process instances to schema S'

(incl. state adaptations)

Type change results into a new version of schema S

Process Instance I₂ not compliant with S'

Stefanie Rinderle, Manfred Reichert, Peter Dadam: Correctness criteria for dynamic changes in workflow systems - a survey. Data Knowl. Eng. 50(1): 9-34 (2004)

Process Model Refactoring

Survey paper

Refactoring large process model repositories Barbara Weber ^a $\stackrel{\otimes}{\sim}$ $\stackrel{\boxtimes}{\rightarrow}$, Manfred Reichert ^b, Jan Mendling ^c, Hajo A. Reijers ^d

AMMoRe@MODELS'18

Catalogue of Process Model Smells

Process Model Smells

PMS1: Non-intention revealing naming of activity / process model

PMS2: Contrived complexity

PMS3: Redundant Process Framgents

PMS4: Large Process Models

PMS5: Lazy Process Models

PMS6: Unused Branches

PMS7: Frequently Occuring Instance Changes

PMS8: Frequently Occurring Variant Changes

Catalogue of Refactoring Techniques

Process Model Refactoring

RF1: Rename Activity

- **RF2:** Rename Process Schema
- **RF3: Substitute Process Fragment**
- **RF4: Extract Process Fragment**
- **RF5: Replace Process Fragment by Reference**
- RF6: Inline Process Fragment
- **RF7: Re-label Collection**
- **RF8:** Remove Redundancies
- RF9: Generalize Variant Change
- **RF10: Remove Unused Branch**

RF11: Pull Up Instance Change

Labeling of Process Models (Example)

- PMS1: Non intention revealing naming of activities / process models
 - Ambiguous or non intention revealing labels
 - Inconsistent use of labels and labeling styles
- Remedy: RF1: Rename activity

Example: Repository with 70 process models from healthcare 16 out of 70 process models contained activities regarding the scheduling of medical procedures (e.g., surgeries, medical examinations, drug administration) Although activities had similar intentions, different labels and labeling styles were used "Make appointment", "appointment", "schedule examination", "fix day", "agree on surgery date", "plan"

Large Process Model (Example)

- PMS4: Large Process Model
 - Literature reports about process models with several hundred activities (Soto et al. 2008)
 - Large process models tend to comprise more formal flaws than smaller ones (Mendling et al. 2008)
- Remedy: RF4: Extract Process Fragment

Business Process Variability

- Variability requires that processes, depending on the context, are treated differently
- Context Factors are known and selection of specific variant depends on context
- Typical Driver
 - Product and Service Variability
 - Country-specific (legal) regulations
 - Different customer groups
 - Seasonal differences

Copyright © Steffen Ramsaier, Flickr

Copyright © Moyan Brenn – Flickr.com

From Process Family Definition to Variant Enactment

Information and Software Technology Volume 57, January 2015, Pages 248-276

VIVACE: A framework for the systematic evaluation of variability support in process-aware information systems

Clara Ayora ^a $\stackrel{\sim}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Victoria Torres ^{a, 1} $\stackrel{\boxtimes}{\sim}$, Barbara Weber ^{b, 2} $\stackrel{\boxtimes}{\sim}$, Manfred Reichert ^{c, 3} $\stackrel{\boxtimes}{\sim}$, Vicente Pelechano ^{a, 1} $\stackrel{\boxtimes}{\sim}$

VIVACE Framework

The VIVACE framework	
Modeling language used to represent process variability	
Technique used for building the configurable process model	
Method f	for modeling the process family
Process pe	rspectives covered
Variability- specific language constructs	LC1 Configurable Region
	LC2 Configuration Alternative
	LC3 Configuration Context Condition
	LC4 Configuration Constraint
	LC5 Configurable Region Resolution Time
Analysis & E F1.1 Mode F1.2 Verif proc F1.3 Valid F1.4 Evalue F1.5 Merg Configuration Support features F3.1 Configuration F3.1 Configuration F3.2 Dyna at enal	Analysis & Design phase
	F1.1 Modeling a configurable process model
	F1.2 Verifying a configurable process model and its related
	process family
	F1.3 Validating a configurable process model
	F1.4 Evaluating the similarity of different process variants
	F1.5 Merging process variants
	Configuration phase
	F2 Configurable process model
	F3.1 Configuring specific regions of a process variant at
	enactment time
	F3.2 Dynamically re-configuring an instance of a process variant
	at enactment time
	Diagnosis
	F4 Analyzing a collection of process variants
	Evolution
	F5.1 Versioning of a configurable process model
	F5.2 Propagating changes of a configurable process model to
aiready configured process variants	

Outcome of a Systematic Literature Review

VIVACE Framework

• Variability-specific Language Constructs

- Configurable Region
- Configuration Alternative
- Configuration Context Condition
- Configuration Constraint
- Configurable Region Resolution Time

Variants of the Check-in Process (1)

Variant 1: Online check-in of an adult passenger with a business class ticket from EU to USA

Variant 2: Online check-in of an adult passenger with an economy class ticket from EU to EU with overweight luggage

Variants of the Check-in Process (2)

Variant 4: Check-in for an unaccompanied minor (UM) passenger with an economy class ticket from EU to EU with a relative accompanying him until the boarding gate

Variant 5: Check-in for a handicapped passenger with an economy class ticket from EU to USA

Variant 6: Check-in for an adult passenger with an economy class ticket from EU to EU with bulk luggage

DTU

Configurable Region

- Activity Pay extra fee is only performed if the luggage has overweight. Otherwise, it is skipped.
- Modeling this variability requires a configurable region in the configurable process model

Configuration Alternatives

• Activity Pay extra fee is only performed if the luggage has overweight. Otherwise, it is skipped

 Two configuration alternatives: either perform the activity Pay extra fee or skip it

fee

Configuration Context Condition

Variant 3: Check-in at the self-servicing machine for an adult passenger with an economy class ticket from EU to EU

 Activity Pay extra fee is only performed if the luggage has overweight. Otherwise, it is skipped

 Context condition: luggage has overweight

Configurable Region Resolution Time

Drop off regular

luggage

- Activity Pay extra fee is only performed if the luggage has overweight. Otherwise, it is skipped
- **Resolution time:** it often only becomes clear during check-in (i.e., at run-time) whether or not an extra fee needs to be paid

Configuration Constraint

Variant 4: Check-in for an unaccompanied minor (UM) passenger with an economy class ticket from EU to EU with a relative accompanying him until the boarding gate

Variant 5: Check-in for a handicapped passenger with an economy class ticket from EU to USA

Variant 6: Check-in for an adult passenger with an economy class ticket from EU to EU with bulk luggage

Localize assistance to accompany passenger should only be performed for passengers with handicap, i.e., there exists a configuration constraint

Assessing Different Approaches to BP Variability using the VIVACE Framework

- VIVACE Framework can be used to assess different approaches to support variability in business processes
- Two Main approaches
 - Behavioural-based approaches
 - Structural-based approaches

Behavioural-based Approaches

• Example: C-EPC/C-iEPC

Florian Gottschalk, Wil M. P. van der Aalst, Monique H. Jansen-Vullers, Marcello La Rosa: Configurable Workflow Models. Int. J. Cooperative Inf. Syst. 17(2): 177-221 (2008)

E Michael Rosemann, Wil M. P. van der Aalst: A configurable reference modelling language. Inf. Syst. 32(1): 1-23 (2007)

Structural-based Approaches

• Example: Provop

Alena Hallerbach, Thomas Bauer, Manfred Reichert: Capturing variability in business process models: the Provop approach. Journal of Software Maintenance 22(6-7): 519-546 (2010)

The Process Spectrum

- The process spectrum reaches from
 - completely predictable and highly repetitive
 - to completely unpredictable and little repetitive

Loosely-specified process models, e.g., CMNN, DCR

Graphs

Completely unpredictable Highly repetitive

Completely unpredictable Little repetitive

ГШГ ГШГ ГШГ

Nautilus (FWF P23699-N23 Modeling Mind (FWF P26609-N15) ModErARe (FWF P26140-N15) DTU

Investigating the Process of Process Modeling

DTU Compute Department of Applied Mathematics and Computer Science

- Modeler evolves the design artifact
- Design artifact can be characterized by a set of properties
 - E.g., number of line crossings, orthogonality of edges, etc.
- Properties of design artifact change as the artifact evolves

Process Model Creation Phases of Process Model Creation

J. Pinggera: The Process of Process Modeling. PhD thesis, University of Innsbruck, Department of Computer Science, 2014.

- Decomposed into different phases
- Iterative, highly flexible process

Investigating the Process of Process Modeling Cheetah Experimental Platform

- Logging interactions with modeling platform
 - Model interactions
 - Technology use

J. Pinggera, S. Zugal and B. Weber: Investigating the Process of Process Modeling with Cheetah Experimental Platform. In: Proc. ER-POIS '10, pp. 13–18, 2010.

Investigating the Process of Process Modeling Cheetah Experimental Platform

J. Pinggera, S. Zugal and B. Weber: Investigating the Process of Process Modeling with Cheetah Experimental Platform. In: Proc. ER-POIS '10, pp. 13–18, 2010.

Investigating the Process of Process Modeling Interactions Logged by Cheetah Experimental Platform

Type of Modeler Interaction	Description
CREATE NODE	Create activity or gateway
CREATE EDGE	Create an edge connecting two nodes
CREATE CONDITION	Create an edge condition
RECONNECT EDGE	Reconnect an edge fron one node to another
DELETE NODE	Delete activity or gateway
DELETE EDGE	Delete an edge conneting two nodes
DELETE CONDITION	Delete an edge condition
RENAME	Rename an activity
MOVE NODE	Move a node
MOVE EDGE LABEL	Move the label of an edge
CREATE/DELETE/MOVE EDGE BENDPOINT	Update the routing of an edge
UPDATE CONDITION	Update an edge's condition
VSCROLL	Scroll vertically
HSCROLL	Scroll horizontally

Investigating the Process of Process Modeling Cheetah Experimental Platform

• Replay of the Process of Process Modeling

Investigating the Process of Process Modeling Visualizing the PPM with Dotted Charts

J. Claes, I. Vanderfeesten, J. Pinggera, H. Reijers, B. Weber and G. Poels: A visual analysis of the process of process modeling. Information Systems and e-Business Management 13(1):147–190, 2015.

Modeling Phase Diagrams

Visualize PPM by accumulating model interactions to modeling phases

J. Pinggera, P. Soffer, S. Zugal, B. Weber, M. Weidlich, D. Fahland, H. Reijers and J. Mendling: Modeling Styles in Business Process Modeling. In: Proc. BPMDS '12, pp. 151–166.

Evolution of the Design Artifact Example of the Orthogonality Property

DTU

Modeling Mind (FWF P26609-N15)

ModErARe (FWF P26140-N15)

Classifying Modelers based on Pragmatic Modeling Features

International Conference on Business Process Management BPM 2018: Business Process Management pp 322-338 | Cite as

Who Is Behind the Model? Classifying Modelers Based on Pragmatic Model Features

Authors

Authors and affiliations

Andrea Burattin 🖂 , Pnina Soffer, Dirk Fahland, Jan Mendling, Hajo A. Reijers, Irene Vanderfeesten, Matthias Weidlich,

Barbara Weber

DTU Compute

Department of Applied Mathematics and Computer Science

Creation of process models

- Creating process models is a complex cognitive design activity
- To accomplish that, the modeller has to
 - Construct a mental representation of the problem domain
 - Externalize the mental model into a process model
- Modelling is **not** for free: it imposes a substantial cognitive load
 - Cognitive load is a good predictor of task performance
 - Overload causes a drop in performance

Soffer, P., Kaner, M., Wand, Y.: Towards Understanding the Process of Process Modeling: Theoretical and Empirical Considerations. In: Proc. ER-BPM'11. (2012) 357-369

E Claes, J., Vanderfeesten, I., Pinggera, J., Reijers, H.A., Weber, B., Poels, G.: Visualizing the Process of Process Modeling with PPM Charts. In: Proc. TAProViz'12. (2013) 744-755

Nickens, C.D., Hollands, J.G.: Engineering Psychology and Human Performance. 3 edn. Pearson (1999)

Experts and novices

- Experts and novices respond differently to model creation tasks
- Novices
 - Challenged in integrating parts of the problem description
 - Challenged in mapping problem description into knowledge structures
 - Challenged in making abstractions (focus on specific functional details)
- ...and experts
 - Tend to develop a holistic understanding
 - Abstract from specific problem characteristics
 - Categorize textual descriptions before developing solutions

Batra, D., Davis, J.G.: Conceptual data modelling in database design: similarities and differences between expert and novice designers. International journal of man machine studies 37(1) (1992) 83-101

Narasimha, B., Leung, F.S.: Assisting novice analysts in developing quality conceptual models with UML. Communications of the ACM 49(7) (2006) 108-112

The role of the modelling tool

- Externalization of the mental model is achieved by interacting with a modelling tool
 - Modeller performs a sequence of interactions which results into [intermediate] models
- Differences between experts and novices suggest that modelling tool should provide different kinds of support and guidance

Can a modelling tool distinguish between experts and novices modellers? SPOILEI ALERT

Yes.

Requirements

Requirements for expertise prediction

- R1. Based on objective measures
- R2. Unobtrusive and no additional effort required
- R3. Work "online" and applicable to intermediate models
- R4. Be independent of the modelling tool

Possible approaches

- Self-assessment of the user... violates R1 and R3
- Use a questionnaire to elicit expertise... violates R2 and R3
- Use neuro-physiological data (e.g., EEG)... violates R2
- Analyze interactions with modeling platform... violates R4
- Analyze pragmatic features of (intermediate) artifacts

General idea of the approach

 After each interaction with the modelling tool an intermediate model is created

Feature identification

- Given a BPMN model we extract the following pragmatic features
- Features referring to the alignment of elements
 Two nodes are aligned if they share at least one of the coordinates
 (within a threshold)
 - F1. Percentage of aligned SESE fragments
 - F2. Percentage of activities in aligned SESE fragments
 - F3. Percentage of activities in not-aligned SESE fragments

Feature identification (cont.)

Features referring to the type and usage of gateways
 F4. Number of explicit gateways

F5. Number of implicit gateways

F6. Number of reused gateways

Feature identification (cont.)

Features referring to the style of edges
 F7. Percentage of orthogonal segments

F8. Percentage of crossing edges

Feature identification (cont.)

Feature referring to the process "as a whole"
 F9. M-BP: consistency of the flow with respect to temporal logical ordering

Datasets used for validation

- Two modelling datasets collected during modelling sessions in TU Eindhoven and Berlin in 2010, DOI: 10.5281/zenodo.1194779
- Cheetah as modelling platform
- Subjects were asked to model two processes
 - "pre-flight", reference:

• "mortgage-1", reference:

Datasets used for validation (cont.)

• Number of models and modelling sessions

	Experts		Novices		
	Sessions		Sessions		
pre-flight	39		118		
mortgage-1	31		144		

 Mann-Whitney U test (are features significant discriminators of expertise levels?)

		F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
pre-flight	p	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001
mortgage-1	p	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001

Descriptive statistics (mean)

DIRECTION OF						
MEAN VALUE SHARED FOR SHARED FOR SHARED FOR	mortgage-1			pre-flight		
Iviean values	Experts		Novices	Experts		Novices
F1. Alignment of fragments	0.86		0.81	0.82		0.76
F2. % acts in aligned frags	0.46		0.43	0.50		0.44
F3. % acts in not-align frags	0.09		0.10	0.08		0.10
F4. # explicit gateways	11.90		10.19	6.84		5.94
F5. # implicit gateways	1.31		1.58	0.37		0.49
F6. # reused gateways	0.34		0.32	0.50		0.47
F7. % orthogonal segments	0.71		0.60	0.57		0.49
F8. % crossing edges	0.01		0.02	0.012		0.008
F9. Flow consistency	0.95		0.88	0.95		0.91
F10. # end points	2.74		2.27	1.60		1.64

Descriptive statistics (correlations)

- Pearson correlation coefficient of features
 - Little indication of correlation: features capture complementary aspects

Problem as classification

- Classification problem
 - Input: 10-dimensional feature space (one for each feature)
 - Each intermediate model as independent model sample
 - Only models from the last 70% of the modelling session (to avoid almost-empty models)
 - Output: likelihood of classification of each class
- We used a feed forward neural network with a hidden layer with 50 neurons
 - Training with Multilayer Perceptron
 - Software based on Weka, available at <u>github.com/DTU-SPE/ExpertisePredictor4BPMN</u>

Classification performance

- Tests on random datasets of (intermediate) BPMN model
 - Quality in terms of F1: harmonic mean between *precision* and *recall*
 - Results as average of each of the 10-fold cross validation

Time performance

- Time required to compute each of the 10 features
 - Standard Java implementation (Cheetah) on standard laptop
 - Tests with typical PC usage maintained (to simulate modeller settings)
- Average time over 18k samples from biggest dataset (mortgage-1)

Conclusion and limitations

- We presented an approach to classify modellers
 - Decision is based on objective measures
 - Decision according to artifacts being modelled
 - Fast computation, applicable to intermediate models
- Identified requirements are all met
- Classification results as F-score
 - On mortgage-1: 0.94
 - On pre-flight: 0.88 (the process lacks complex behavioural structures)
- Limitations
 - Currently only applicable to BPMN models
 - Big models (> 30 activities) might require more time to compute features
 - Same modelling task used for training and prediction
- DTU

R1. Based on objective measures

R2. Unobtrusive and no additional effort

R3. "Online" and intermediate models R4. Independent of the modelling tool

Impact and future work

- Potential impact on several aspects
 - For developers: design tools that adapt themselves to the user
 - For educators: assess user capabilities and form groups
 - For practitioners: recruitment, task allocation and team formation
- Future work include
 - Generalizing the task to predict models not used for training
 - Improve prediction of sessions rather than models
 - Continue the feature engineering process

Towards a Neuro-adaptive Modeling Platform

DTU Compute Department of Applied Mathematics and Computer Science

Overview of a Neuro-adaptive System

Cognitive Load During Development Activities

 Cognitive load (CL) characterizes the demands tasks impose on the limited information processing capacity of the brain

 High CL leads to poor task performance and to wrong decisions

E Chen, F., Zhou, J., Wang, Y., Yu, K., Arshad, S. Z., Khawaji, A., & Conway, D.: Robust Multimodal Cognitive Load Measurement. Springer 2016.

Nickens, C. D., & Hollands, J. G.: Engineering Psychology and Human Performance (3rd ed.). Pearson 1999.

AMMoRe@MODELS'18

Cognitive Load: A Predictor for Task Performance

DTU

₩

Assessment of Cognitive Load

- Subjective ratings
 - SWAT, NASA-TLX
- Performance measures
 - Dual-task setting
- Behavioral measures
 - Eye tracking, i.e., eye movements
 - User interactions

Neuro-physiological measures

- Heart rate variability
- Eye tracking, i.e., pupillary responses, eye blink rate
- EEG
- Galvanic Skin Response

Chen, F., Zhou, J., Wang, Y., Yu, K., Arshad, S. Z., Khawaji, A., & Conway, D.: Robust Multimodal Cognitive Load Measurement. Springer 2016.

Overview of a Neuro-adaptive System

Overview of a Neuro-adaptive System

Relevant Context Factors for Development Activities

Factors influencing Cognitive Load and Task Performance

Relevant Context Factors for Development Activities

- Development activities are characterized by flexible processes
 - Repeated execution of different phases

Process of creating the digital artifact

Write BDD Test	Implement Step Code	Implement System Under Test	Run BDD Test (Fails)	Implement System Under Test	Run BDD Test (Succeeds)	
Problem Understandi	Meth ng Findi	 od Modeling ng	Reconciliation	 Modeling	Semantic Validation	
time						

 The digital artifact evolves from an initial state over a set of intermediate versions to the final end product

Neuro-adaptive Development Platform: Suggested Software Architecture

New Avenues for Investigating the Evolution of a Digital Artifact

- Process-oriented through continuous data collection
- Multi-modal data collection
- Measurements linked with digital artifact

Summary

- Enabling flexibility in executable process models through process adaptation, process evolution, and business process variability
- Investigating the process of process modeling
 - Cheetah Experimental Platform
 - Logging User Interactions
 - Properties of the Design Artifact
- From offline to **on-the fly**
 - Example: On the fly classification of modelers
- Going beyond the artifact and towards multi modal measurements
 - Example: Neuro-adaptive modeling support

Thanks for your attention!

bweb@dtu.dk

DTU Compute Department of Applied Mathematics and Computer Science